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Abstract 

 

The image processing algorithms collectively known as super-resolution (SR) have proven effective 

in producing high-quality imagery from low-resolution (LR) images. This paper focuses on a novel 

image resolution enhancement method employing the wavelet domain techniques. In order to 

preserve more edge information, additional edge extraction step is proposed employing high-

frequency (HF) sub-band images - low-high (LH), high-low (HL), and high-high (HH) - via the 

Discrete Wavelet Transform (DWT). In the designed procedure, the LR image is used in the sparse 

interpolation for the resolution-enhancement obtaining low-low (LL) sub-band. Additionally, all 

sub-bands (LL, LH, HL and HH) are performed via the Lanczos interpolation. Finally, the estimated 

sub-band images are used to form the new high-resolution (HR) image using the inverse DWT 

(IDWT). Experimental results on real data sets have confirmed the effectiveness of the proposed 

framework in terms of objective criteria as well as in subjective perception. 

 

21 Introduction 

 

Relatively recently, researchers have begun developing methods to extend the SR algorithms to 

different imaging applications. There are differences that depend of imaging applications. Medical 

imaging applications differ from photographic imaging in several key respects. Unlike photographic 

imaging, medical imaging applications often use highly controlled illumination of the human 

subject during image acquisition that usually leads to higher signal-to-noise ratios (SNR). On other 

hand, the image processing artifacts are much less tolerable in medical images than in photographic 

applications. Another difference is that the majority of medical imaging applications involve 

creating images through three-dimensional objects. Thus, while the final images are two 

dimensional, they represent some form of projection through a three-dimensional volume [1]. 

 

The general image capture model, or forward model, combines the various effects of the 

digital image acquisition process such as point-wise blurring, motion, under-sampling, and 

measurement noise. The problem in this point is to estimate an HR image u(m,n) from 

measurements of an LR image f(m,n) that were obtained through a linear operator K that forms a 

degraded version of the unknown HR image, which was additionally contaminated by an additive 

noise ℰ(𝑚, 𝑛), and can be represented as the forward imaging model as follows: 

 
𝑓(𝑚, 𝑛) = 𝐾[𝑢(𝑚, 𝑛)] + ℰ(𝑚, 𝑛).  

(21) 

 

In most applications, K is a subsampling operator that should be inverted to restore an 

original image size and this problem usually should be treated as an ill-posed problem. Many image 

display devices have zooming abilities that interpolate input images to adapt their size to HR 

screens. Current proposal introduces a general class of nonlinear inverse estimators that were 

obtained with an adaptive mixing of linear estimators, with applications to image interpolation. 

 

Wavelets also play a significant role in many image processing applications. The 2-D 

wavelet decomposition of an image is performed by applying the 1-D DWT along the rows of the 

image first, and then, the results are decomposed along the columns. This operation results in four 

decomposed sub-band images. The frequency components of those images in the sub-bands cover 

the full frequency spectrum of the original image. Image resolution enhancement using wavelets is 

a relatively new subject, and recently, many novel algorithms have been proposed [2-6]. These 

algorithms have attempted to improve the sharpness and fine features by using special procedures in 

the wavelet domain; where such reconstructions are performed by manipulations in the different 

decomposition sub-bands. 
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Prior information on the image sparsity has been widely used for image interpolation [7]. 

Wavelet estimators were introduced to compute fine-scale wavelet coefficients by extrapolating 

larger-scale wavelet coefficients [8, 9]. A more general and promising class of nonparametric SR 

estimators assumes that the HR image u(m,n) is sparse in some dictionary of vectors. This sparse 

representation is estimated by decomposing the LR measurements f in a transformed dictionary [10, 

11]. The principal idea behind the restriction of the sparse SR algorithms is that the HR results can 

be improved by using more prior information on the image properties. 

 

The predominant task of current study is consists of using an approach based on wavelet 

decomposition techniques that permit to take into account both spatial and spectral wavelet pixel 

information to enhance the resolution of a single image that can also be expanded to video 

sequences of different types [12, 13]. 

 

The principal contributions of current SR proposal in difference to other state of-the-art 

resolution-enhancement techniques consists in the mutual interpolation via Lanczos and Nearest-

neighbor interpolation (NNI) techniques employed in Wavelet Transform (WT) HF sub-band 

images, an edge extraction procedure in wavelet transform space and adaptive directional LR image 

interpolation via sparse image mixture models in a DWT frame. The proposed framework 

additionally applies special denoising filtering that uses the Non-Local Means (NLM) for the input 

LR image performing better robustness in the SR process. Finally, all of the sub-band images are 

combined, generating a final HR image via IDWT that presents better resolution performance in 

terms of the objective criteria and subjective visual perception in comparison with the best existing 

algorithms. 

 

To justify that the novel algorithm of image resolution enhancement has real advantages, we 

have compared the proposed SR procedure with other similar techniques, such as the following: 

Demirel-Anbarjafari Super Resolution (DASR) [14], Wavelet domain image resolution 

enhancement using Cycle-Spinning (WDIRECS) [15], Image Resolution Enhancement applying 

Discrete and Stationary Wavelet Decomposition (IREDSWD) [16], and Discrete Wavelet 

Transform-Based Satellite Image Resolution Enhancement (DWTSIRE) [17]. 

 

To ascertain the effectiveness of the proposed algorithm over other wavelet-domain 

resolution enhancement techniques, different LR images of different nature (satellite, medical and 

optical) obtained from [18, 19] were tested. The first database consists of the 20 medical images, 

and the second database contains 38 satellite images. All images have format of 8 bits/pixels for 

gray scale. 

 

The remainder of this paper is organized as follows. Section 2.1 presents a short introduction 

to the NLM filtering method, Section 2.2 shows an implementation of an image interpolation 

through the inverse mixing estimator in a single image in wavelet space. The proposed technique 

for image SR reconstruction is presented in Section 3. Section 4 explains the applied quality criteria 

that were used to quantify the SR results. Section 5 discusses the qualitative and quantitative results 

of the proposed technique in comparison with other better conventional techniques. Finally, the 

conclusions are drawn in the final section. 

 

19.1 Problem Statement Proposed Methodology 

 

Non-Local Means Filtering 

 

The NLM algorithm computes a denoised pixel 𝑢̂(𝑚, 𝑛) by applying the weighted mean of the 

surrounding pixels of 𝑓(𝑚, 𝑛) = {𝑓(𝑟, 𝑠)|(𝑟, 𝑠) ∈ 𝑁(𝑚, 𝑛)}, the estimated value for a pixel (𝑚, 𝑛), 

is computed as a weighted average of all the pixels in the image [20]: 
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𝑢̂(𝑚, 𝑛) =
∑ 𝑓[𝑟,𝑠]𝑤[𝑚,𝑛;𝑟,𝑠](𝑟,𝑠)∈𝑁(𝑚,𝑛)

∑ 𝑤[𝑚,𝑛;𝑟,𝑠](𝑟,𝑠)∈𝑁(𝑚,𝑛)
, 

 
                     (21.1) 

 

where 𝑁(𝑚, 𝑛) stands for the neighborhood of the pixel 𝑓[𝑟, 𝑠], and the term 𝑤[𝑚, 𝑛; 𝑟, 𝑠] is 

the weight for the (m,n)-th neighbor pixel.  

 

The weights for the filter are computed based on radiometric (grey-level) proximity and 

geometric proximity between the pixels, namely: 

 

 

𝑤[𝑚, 𝑛; 𝑟, 𝑠] = 𝑒𝑥𝑝 {−
(𝑓[𝑚,𝑛]−𝑓[𝑟,𝑠])2

2𝛾2 } ∙

𝑔 (√(𝑚 − 𝑟)2 + (𝑛 − 𝑠)2).  

         (21.2) 

 

The function g takes the geometric distance into account. The parameter 𝛾 controls the effect 

of the grey-level difference between the two pixels. This way, when the two pixels that is markedly 

different, the weight is very small, implying that this neighbor is not to be trusted in the averaging. 

 

The denoised image 𝑢̂(𝑚, 𝑛) is used in next steps of the proposed framework. 

 

Interpolations with Sparse Wavelet Mixtures 

 

The subsampled image 𝑢̂(𝑚, 𝑛) is decomposed with one level DWT in the sub-bands (LL - 

approximations; and LH – horizontal details, HL – vertical details, HH diagonal details), which are 

treated as the matrixes Η whose columns (approximations and details) are the vectors of a wavelet 

frame on a single scale. A construction is performed with a dual frame matrix Η whose columns are 

the dual wavelet frames {ℎ𝑚,𝑛}
0≤𝑚≤3

 [21]. The wavelet coefficients are written as follows: 

 

 
𝑧̂(𝑚, 𝑛) = 〈𝑢̂, ℎ𝑚,𝑛〉 = 𝐻𝑢̂(𝑚, 𝑛).  

                      (21.3) 
 

The WT separates an LF image (an approximation) 𝑧𝑙 that is projected over the sub-band 

image LL scaling filters {ℎ0,𝑛}
𝑛𝜖𝒢

 and an HF image (details) 𝑧ℎ that is projected over the finest scale 

wavelets LH, HL, and HH in three directions {ℎ𝑚,𝑛}
1≤𝑚≤3,𝑛∈𝒢

. 

 

 

𝑧𝑙 = ∑ 𝑧̂(0, 𝑛)ℎ0,𝑛

𝑛𝜖𝒢

    𝑎𝑛𝑑 

𝑧ℎ = ∑ 𝑧̂(𝑚, 𝑛)ℎ𝑚,𝑛

3

𝑚=1

. 
 

          (21.4) 
 

The LF image 𝑧𝑙 has little aliasing, and it can be interpolated sufficiently well when 

applying a Lanczos interpolator 𝑉+. For interpolating the HF image 𝑧ℎ, we employ directional 

interpolators 𝑉𝜃
+ for 𝜃𝜖Θ, where Θ is a set of angles that is uniformly discretized between 0 and 𝜋. 
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For each angle 𝜃, a directional interpolator 𝑉𝜃
+ is applied over a block 𝐷 = 𝐷𝜃,𝑞 of wavelet 

coefficients if the directional regularity factor ‖𝑄̅𝐷𝑧̂‖; 𝑄̅𝐷 (sparse regularity operators) is relatively 

small in the mentioned block.  

 

Such regularization is effective if the eigenvalues of the self-conjugated operator 𝑄̅𝐷
∗ 𝑄̅𝐷 have 

an overall variation that is sufficiently large to distinguish regular variations from non-regular 

variations in a given direction 𝜃 in D. For this step, it was proposed to choose rectangular blocks 

𝐷 = 𝐷𝜃,𝑞 that are elongated in the direction of 𝜃. Each block D in the spatial neighborhood of q is 

chosen to be identical in the three bands 𝑑 = 1,2,3; thus, 𝑙𝐷(𝑚, 𝑛) = 𝑙𝐷(𝑚), where 𝑙𝐷 is the 

indicator of the approximation set D. 

 

Each image 𝑧̂𝐷 that is reconstructed from fine-scale wavelet coefficients in a block 𝐷 = 𝐷𝜃,𝑞 

is interpolated with a directional interpolator 𝑉𝐷
+ = 𝑉𝜃

+. The HF residual 𝑧̂𝑟 and the image LF 𝑓𝑙 are 

interpolated with a separable and nearly isotropic Lanczos interpolator 𝑉+. The resulting 

interpolator can be written in the following form [22]: 

 

 

𝑈𝐿𝐿 = 𝑉+𝑧̂(𝑚, 𝑛) + ∑(𝑉𝜃
+

𝜃𝜖Θ

− 𝑉+) H̅ ( ∑ 𝑎̅

𝑞𝜖ẑ𝜃

(𝐷𝜃,𝑞)𝑙𝐷𝜃,𝑞
𝑧̂(𝑚, 𝑛)). 

 

          (21.5) 
 

The image 𝑧̂(𝑚, 𝑛) is first interpolated with a separable Lanczos interpolator 𝑉+. For each 

angle 𝜃, an update is computed over wavelet coefficients of each block of direction 𝜃 multiplied by 

their mixing weight 𝑎̅(𝐷𝜃,𝑞), with the difference between the separable interpolator 𝑉+ and a 

directional interpolator 𝑉𝜃
+ along 𝜃. This overall interpolator is calculated with 𝑂(|Θ|𝑁) operations, 

where |Θ| = 20 is the number of interpolation angles. Numerical experiments are performed with 

20 angles, with blocks having a width of 2 pixels and a length between 6 and 12 pixels depending 

on their orientation. 

 

Proposed approach in resolution enhancement 

 

In this technique, one level of DWT that applies different wavelet families is used to decompose an 

input image. DWT separates an image into different sub-bands. The interpolation process should be 

applied to the four sub-band images. 

 

Additionally, the novel framework applies a denoising procedure by using the Non-Local 

Means (NLM) for the input LR image (Noise Reduction Stage, Fig.21). This approach has better 

performance on the HF image components and generates significantly sharper and clearer edges and 

fine features in the final SR image. 

 

In the proposed SR procedure, the LR image is used as the input data in the sparse 

representation for the resolution-enhancement process in the following way (Sparse Stage, Fig.21). 

Finally, the algorithm computes the missing samples along the direction 𝜃 from the previously 

calculated new samples, where the entire sparse process is performed with the Lanczos 

interpolation, reconstructing LL sub-band. 
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Figure 21 Block diagram of the proposed resolution-enhancement algorithm 

 
 

The differences between the interpolated LL sub-band image (with factor 2) and the LR 

input image are in their HF components that why it has been proposed the intermediate process to 

correct the estimated HF components applying this difference image. As it is seen in DWT and 

interpolation stage of the algorithm (Fig.21), this difference is performed in HF sub-bands by 

interpolating each band via NNI process (changing the values of pixels in agree with the closest 

neighbor value), including additional HF features into the HF images. 

 

To preserve more edge information and to obtain a sharper enhanced image, we have 

proposed an extraction step of the edge using HF sub-bands images, that employs the first level in 

the DWT decomposition for an input image LR, the edge information is used into HF sub-bands 

employing NNI process (Edge Extraction Stage in Fig.21). The edge extracted image is calculated 

as follows [24]: 

 

 

 
          (21.6) 

 

Finally, we perform an additional interpolation with Lanczos interpolation (factor 2) to reach 

the required size for the IDWT process (IDWT and SR Stage, Fig.21). It was noticed that the 

intermediate process of adding the difference image (the image that contains the HF components) 

generates a significantly sharper reconstructed SR image. This sharpness is boosted by the fact that 

the interpolation of the isolated HF components in HH, HL, and LH appears to preserve more HF 

components than interpolating from the LR image directly. 

 

Performance evaluation 

 

In order to evaluate the effectiveness of the proposed resolution enhancement algorithm, the 

following criteria are employed: peak signal-to-noise ratio (PSNR), mean absolute error (MAE), 

finally the similarity structural index measure (SSIM) [25, 26] which match better human 

subjectivity. 

𝑆 = √(𝐻𝐻)2 + (𝐻𝐿)2 + (𝐿𝐻)2, 
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The PSNR is defined as: 

 

𝑃𝑆𝑁𝑅 = 10 ∙ 𝑙𝑜𝑔10
(255)2

𝑀𝑆𝐸
, dB, 

 
          (21.7) 

 

Where, the mean square error (MSE) is the error measure for a gray scale image of 

dimension mxn. 

 

The mean absolute error (MAE) is presented as follows: 

𝑀𝐴𝐸 =
1

𝑚𝑥𝑛
∑ ∑|𝑢̂[𝑖, 𝑗] − 𝑢[𝑖, 𝑗]|

𝑛

𝑗=1

𝑚

𝑖=1

 
 

                     (21.8) 

 

To obtain the objective criteria value, PSNR and MAE employ the reference image (HR) 

𝑢(𝑖, 𝑗) and the reconstructed SR image estimated via the SR algorithm 𝑢̂(𝑖, 𝑗). 

 

The standard quality metrics used in the past such as PSNR, can be erroneous in some cases; 

therefore, novel metrics, such as SSIM, which matches human subjectivity better, should be used to 

characterize the performance of the algorithm. For monochrome images, the SSIM metric values 

are defined as follows: 

 

𝑆𝑆𝐼𝑀(𝑢, 𝑢̂) = [
2𝜇𝑢𝜇𝑢 + 𝐶1

𝜇𝑢
2 + 𝜇𝑢

2 + 𝐶1

]

∙ [
2𝜎𝑢𝜎𝑢 + 𝐶2

𝜎𝑢
2 + 𝜎𝑢

2 + 𝐶2

]

∙ [
𝜎𝑢𝑢 + 𝐶3

𝜎𝑢𝜎𝑢 + 𝐶3
], 

 

          (21.9) 

 

Here, 𝑢̂ is the reconstructed SR image, and x is the original (HR) image; 𝜇 and 
2  are the 

sample mean values and sample variances for the u or 𝑢̂ images, and 𝜎𝑢̂𝑢 is the sample cross-

variance between the 𝑢̂ and u images. The justification of the SSIM index can be found in [25, 26]. 

The constants C1, C2, and C3 are used to stabilize the metric for the case in which the means and 

variances become very small, and usually C1=C2=C3=1. 
 

Because it is difficult to define the objective criteria that should be used to ensure the 

accurate quantization of the reconstructed images, a subjective measure of the image distortion was 

used in this study via subjective visual perception by human visual system. A subjective visual 

comparison of the images provides information about any spatial distortion or artifacts introduced 

by the algorithm that is employed and, thus, can make it possible to evaluate the performance of the 

analyzed technique in a different manner. 

 

19.2 Experimental Results and Discussion 

 

In order to show the effectiveness of the proposed method over the conventional and state-of-the-art 

image resolution enhancement techniques, different test images (Baboon, Elaine, Aerial-A, Aerial-

B, Medical-1 and Medical-2) with different feature are used for comparison from mentioned image 

databases. In this paper, the following families of classic wavelet functions are used: Daubechies 

(Db), Symlet (Sym), and biorthogonal (Bior). 

 

 



352 
     

 

     
 

Referring to the image Baboon (Fig.21.1) shows the results of the SR reconstruction 

algorithm applied to a LR 128×128 pixels image to obtain a 512x512 pixels resolution enhancement 

image. The novel resolution enhancement algorithm appears to perform better in terms of objective 

criteria (PSNR and SSIM) as well as in terms of subjective perception, especially using wavelet Db-

1. The visual subjective perception can be verified in the zoomed part of the Baboon image (left 

eye), where fine details appear to be preserved better in the novel proposed SR framework. 

 

In the SR reconstructed Elaine image, one can observe from analyzing Fig. 21.2 that the 

novel algorithm performs better in PSNR and SSIM, especially using wavelet Sym-2, also it 

presents the better perception especially in the well-defined borders (see the zoomed part of the 

image). 

 

Figure 21.1 Visual perception results for the Baboon image contaminated by Gaussian noise 

(PSNR=17 dB) 

 
LR Image DASR [26] WDIRECS [27] DWTSIRE [29] 

Proposed 

Db1 

     

     

128x128 

PSNR=31.26 

SSIM=0.663 

512x512 

PSNR=30.70 

SSIM=0.659 

512x512 

PSNR=29.70 

SSIM=0.647 

512x512 

PSNR=31.96 

SSIM=0.767 

512x512 

 

 

Figure 21.2 Visual perception results for the Elaine image contaminated by Gaussian noise 

(PSNR=17 dB) 
 

LR Image DASR [26]  WDIRECS [27] IREDSWD [28] 
Proposed 

Sym2 

     

     

128x128 

PSNR=27.10 

SSIM=0.846 

512x512 

PSNR=26.81 

SSIM=0.819 

512x512 

PSNR=29.32 

SSIM=0.764 

512x512 

PSNR=30.39 

SSIM=0.861 

512x512 
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Figure 21.3 Visual perception results for the Aerial-A image contaminated by Gaussian noise 

(PSNR=17 dB) 

 

LR Image WDIRECS [26] IREDSWD [28] DWTSIRE [29] 
Proposed 

Sym2 

     

     

128x128 

PSNR=27.18 

SSIM=0.756 

512x512 

PSNR=27.77 

SSIM=0.718 

512x512 

PSNR=27.51 

SSIM=0.761 

512x512 

PSNR=31.94 

SSIM=0.778 

512x512 

 
Figure 21.4 Visual perception results for the Aerial-B image contaminated by Gaussian noise 

(PSNR=17 dB) 
 

LR Image DASR [26] WDIRECS [27] DWTSIRE [29] 
Proposed 

Sym2 

     

     

128x128 

PSNR=27.58 

SSIM=0.626 

512x512 

PSNR=28.13 

SSIM=0.625 

512x512 

PSNR=27.74 

SSIM=0.626 

512x512 

PSNR=31.77 

SSIM=0.623 

512x512 

 

In the resolution enhancement of the Aerial-A image (see Fig.21.3), one can observe that 

there is better performance in terms of the objective criteria PSNR and SSIM as well as in the 

subjective perception when the proposed SR procedure is employed with the wavelet Sym-2 in 

comparison with the other state-of-the art technique. 

 

Fig. 5 compares the Aerial-B image obtained by different algorithms. In the zoomed images, 

one can observe that conventional SR methods produce some blur and artifacts. In contrast, the 

novel SR algorithm provides better image quality (PSNR and SSIM), when the wavelet Sym-2 is 

employed. The proposed SR algorithm restores slightly better regular geometrical structures. 

 

The resolution enhancement algorithms have an important application in the processing of 

medical images. For this reason, we have tested several medical images. In the Medical-1 image 

(see Fig. 6), it is easy to see better performance in accordance with the objective criteria and via 

subjective visual perception in SR enhancement when the proposed algorithm is employed with the 

wavelet Sym-2. Better preservation of the fine details in the zoomed part of the image can be 

obtained for the novel resolution enhancement framework. 
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Fig. 21.6 compares the SR image Medical-2 obtained by different algorithms. In the zoomed 

images, one can observe that conventional SR methods produce some blur and artifacts. In contrast, 

the novel proposed algorithm provides better image quality (PSNR and SSIM), when the wavelet 

Sym-2 is employed. The proposed algorithm restores slightly better regular geometrical structures, 

as shown in the zoomed part in Medical-2. 

 

Figure 21.5 Visual perception results for the Medical-1 image contaminated by Gaussian noise 

(PSNR=17 dB) 

 

LR Image DASR [26] WDIRECS [27] DWTSIRE [29] 
Proposed 

Sym2 

     

     

128x128 

PSNR=23.40 

SSIM=0.824 

512x512 

PSNR=23.99 

SSIM=0.821 

512x512 

PSNR=22.41 

SSIM=0.828 

512x512 

PSNR=24.06 

SSIM=0.828 

512x512 

 

Figure 21.6 Visual perception results for the Medical-2 image contaminated by Gaussian noise 

(PSNR= 17 dB) 

 

LR Image DASR [26] WDIRECS [27] DWTSIRE [29] 
Proposed 

Sym2 

     

     

39x90 

PSNR=22.98 

SSIM=0.929 

156x360 

PSNR=23.33 

SSIM=0.927 

156x360 

PSNR=23.26 

SSIM=0.930 

156x360 

PSNR=23.62 

SSIM=0.937 

156x360 

 

In these experiments, we revise the resolution enhancement of a number of images from 

databases. It can be concluded from this analysis of the SR enhancement images that novel 

framework results in sharper edges and fine features, better cleaning in details, and visually closely 

resembles the original image when it compares against the other techniques SR results. Overall, the 

results in table 21, 21.1, 21.2 and 21.3 show the better performance in terms of the objective criteria 

(PSNR, MAE and SSIM) as well as in the subjective perception via human visual system. 
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Table 21 Objective criteria values of the resolution enhancement from 128x128 to 512x512. (The 

LR image is contaminated by Gaussian noise PSNR=17 dB) 

 

Sr Methods 
Baboon Elaine 

Mae Psnr Ssim Mae Psnr Ssim 

Iredswd [16] 

Db1 7.968 31.055 0.648 7.547 29.433 0.764 

Sym2 7.677 30.909 0.589 7.117 29.320 0.764 

Bior1.3 9.178 30.295 0.626 8.340 28.181 0.744 

Dwtsire [17] 

Db1 8.192 29.702 0.647 8.020 26.830 0.824 

Sym2 10.864 29.450 0.640 7.481 27.625 0.861 

Bior1.3 10.967 29.288 0.532 7.207 26.982 0.786 

Dasr [14] 

Db1 6.833 31.261 0.663 7.273 26.748 0.805 

Sym2 7.325 30.985 0.647 7.986 27.106 0.846 

Bior1.3 7.191 31.158 0.654 7.557 26.745 0.804 

Wdirecs [15] 

Db1 7.263 30.700 0.659 7.490 26.681 0.767 

Sym2 6.260 31.357 0.657 6.199 26.814 0.819 

Bior1.3 7.244 30.709 0.659 7.554 26.667 0.766 

Proposed Sr Technique 

Db1 5.412 31.968 0.767 6.951 30.256 0.835 

Sym2 5.557 32.137 0.620 5.561 30.398 0.861 

Bior1.3 5.585 31.898 0.716 6.429 30.484 0.829 

 

Table 21.1 Objective criteria values of the resolution enhancement from 128x128 to 512x512. (The 

LR image is contaminated by Gaussian noise PSNR=17 dB) 

 

Sr Methods 
Aerial-A Aerial-B 

MAE PSNR SSIM MAE PSNR SSIM 

Iredswd [16] 

Db1 13.163 26.215 0.659 21.561 26.971 0.515 

Sym2 12.834 27.770 0.718 19.198 27.022 0.577 

Bior1.3 14.012 27.117 0.692 19.115 27.106 0.433 

Dwtsire [17] 

Db1 13.524 27.521 0.688 19.521 27.312 0.543 

Sym2 11.530 27.510 0.761 16.988 27.739 0.626 

Bior1.3 13.442 27.130 0.682 20.617 27.265 0.539 

Dasr [14] 

Db1 16.371 27.305 0.685 19.841 27.442 0.540 

Sym2 15.858 27.176 0.758 18.167 27.578 0.626 

Bior1.3 17.113 27.125 0.676 20.707 27.313 0.532 

Wdirecs [15] 

Db1 13.992 27.311 0.673 16.957 27.726 0.532 

Sym2 12.028 27.718 0.756 14.493 28.130 0.625 

Bior1.3 13.946 27.318 0.674 16.920 27.736 0.532 

Proposed Sr Technique 

Db1 7.631 30.953 0.734 7.315 31.111 0.583 

Sym2 5.542 31.946 0.778 5.858 31.774 0.623 

Bior1.3 6.813 31.261 0.729 6.477 31.363 0.580 
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Table 21.2 Objective criteria values of the resolution enhancement from 128x128 to 512x512. (The 

LR image is contaminated by Gaussian noise PSNR=17 dB) 

 

Sr Methods 
Medical-1 Medical-2 

MAE PSNR SSIM MAE PSNR SSIM 

Iredswd [16] 

Db1 14.929 18.918 0.786 9.821 20.415 0.906 

Sym2 10.921 22.350 0.819 8.536 22.621 0.915 

Bior1.3 14.269 19.600 0.747 11.806 19.959 0.889 

Dwtsire [17] 

Db1 11.138 21.841 0.804 10.192 22.181 0.915 

Sym2 9.959 22.412 0.828 8.379 23.259 0.930 

Bior1.3 11.753 20.212 0.797 9.500 22.178 0.916 

Dasr [14] 

Db1 11.154 21.786 0.807 10.180 22.175 0.916 

Sym2 10.217 23.399 0.824 8.793 22.977 0.929 

Bior1.3 11.395 21-628 0.792 10.213 22.090 0.915 

Wdirecs [15] 

Db1 10.904 22.297 0.811 9.671 22.395 0.929 

Sym2 10.131 23.987 0.821 8.616 23.334 0.927 

Bior1.3 10.924 22.863 0.805 9.743 22.534 0.929 

Proposed Sr Technique 

Db1 10.699 22.442 0.812 9.599 22.924 0.934 

Sym2 9.844 24.063 0.828 8.365 23.625 0.937 

Bior1.3 10.830 22.288 0.809 9.612 22.909 0.934 

 

Numerous statistical simulations that we realized using databases that contain the test 

images of different nature (satellite, medical, optical, etc.) that are characterized by varying texture, 

details and edges, properties have confirmed the better performance of proposed method in  

resolution enhancement guaranteeing it robustness. 

 

21.3 Conclusions 

 

In this work, a novel resolution-enhancement technique based on the interpolation of the HF sub-

band images in the wavelet domain is presented. In contrast with other state-of-the-art resolution-

enhancement techniques, the designed framework applies the edge and fine features information 

that is obtained from the HF sub-band images in wavelet transform space, NLM denoising 

algorithm modifying them for the SR restoration, and performs the sparse interpolation over an 

oriented block (approximations and details) in an LR image. All of these steps result in image 

resolution enhancement.  

 

Numerous simulation results on images from databases of different nature (satellite, 

medical, optical) have confirmed superiority of the proposed enhancement framework in 

performing the SR reconstruction while employing different wavelet function in comparison with 

other conventional methods. Experimental results have demonstrated better performance and 

robustness of the proposed algorithm in terms of objective criteria (PSNR, MAE and SSIM), as well 

as in the subjective perception via the human visual system. 
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